Preliminary communication

Anionic cyclopentadienyluranium(III) complexes

Jean-François Le Maréchal, Emmanuelle Bulot, Denise Baudry, Michel Ephritikhine

Service de Chimie Moléculaire, IRDI/DESICP/DPC, CNRS UA 331 CEA CEN/Saclay, 91191 Gif sur Yvette Cédex (France)

Didier Hauchard and Robert Godard

Institut National des Sciences et Techniques Nucléaires, CEA CEN/Saclay, 91191 Gif sur Yvette Cédex (France)

(Received July 22nd, 1988)

Abstract

The Na/Hg reduction of Cp₃UX (X = Me, n-Bu, BH₄) and Cp₂U(BH₄)₂ in the presence of 18-crown-6 ether has given the anionic uranium(III) complexes [Cp₃UX][Na(18-crown-6)] and [Cp₂U(BH₄)₂][Na(18-crown-6)]; in agreement with cyclic voltammetry experiments, the borohydride anions were found to be re-oxidized by TlBH₄ into the corresponding uranium(IV) complexes.

In contrast to the variety of the anionic lanthanide(III) complexes [1], few organometallic anions of uranium(III) have been isolated. The bis(pentamethyl-cyclopentadienyl) anion $Cp'_2UCl_2Na \cdot 2THF$ was obtained by the sodium amalgam reduction of Cp'_2UCl_2 [2], and the alkyl derivatives Cp_3URLi ($Cp = \eta - C_5H_5$, R = Me, n-Bu) were synthesized from the Cp_3UR compounds by treatment with an excess of alkyllithium [3]. Electrochemical studies showed that tricyclopentadienyl-uranium(IV) complexes could be reversibly reduced, but the compounds were not extracted from the supporting electrolyte, or in some cases reacted with it [4,5]. Here we describe the convenient synthesis and separation of anionic cyclopentadienyl-uranium(III) products, obtained by the sodium amalgam reduction of the corresponding uranium(IV).

The uranium(III) borohydride anions $Cp_3U(BH_4)^-$ and $Cp_2U(BH_4)_2^-$ were prepared in almost quantitative yield by the reaction at 20 °C of $Cp_3U(BH_4)$ [6] and $Cp_2U(BH_4)_2$, respectively [7], with a slight excess of Na/Hg in tetrahydrofuran (THF). The mixture was stirred for 1 h, and the solution was then decanted, filtered, and evaporated. In the presence of 1 equiv. of 18-crown-6 the compounds $[Cp_3U(BH_4)][Na(18-crown-6)]$ (I) and $[Cp_2U(BH_4)_2][Na(18-crown-6)]$ (II) were isolated as air sensitive red crystals from THF/pentane or THF/diethyl ether *. The borohydride anions were also prepared by treatment of $(\eta^6$ -mesitylene)U(BH₄)₃ [8] with 2 and 3 equiv. of NaCp in THF. Compounds I and II were characterized by their elemental analyses (C, H, B) and their ¹H NMR spectra: δ (60 MHz, THF- d_8 , 30 °C) I: 14.50 (4H, q, J 78 Hz, BH₄), 3.40 (24 H, s, 18-crown-6), -13.27 (15H, s, Cp). II: 61.08 (8H, q, J 78 Hz, BH₄), 3.54 (24 H, s. 18-crown-6), -13.75 (10H, s, Cp).

When treated with TlBH₄ in THF, I and II were readily reoxidized to the corresponding uranium(IV) complexes; this behaviour is in keeping with the electrochemical behaviour of these compounds. It has previously been demonstrated that the tricyclopentadienyluranium borohydride undergoes a simple one-electron quasi reversible reduction at $E_{1/2} = -1.33$ V vs. Ag/AgCl [5]. The cyclic voltammograms of Cp₂U(BH₄)₂ in THF (supporting electrolyte 0.15 *M* Bu₄NPF₆) at either platinum or gold electrode also exhibit a single and reversible wave at $E_{1/2} = -0.96$ vs. Ag/AgCl (the *iR* drop was corrected, $\Delta E_p = 60$ mV and $i_{pa}/ip_c = 0.82$ at 50 mV/s). Some reaction of Cp₂U(BH₄)₂ with the electrolyte solution was evidenced by the progressive attenuation of the oxidation and reduction peaks and by NMR spectroscopy; the unidentified product(s) appeared to be not electroactive.

References

- H. Schumann, Angew. Chem. Int Ed. Engl., 23 (1984) 474; W.J. Evans, Advan. Organomet. Chem., 24 (1985) 131.
- 2 P.J. Fagan, J.M. Manriquez, T.J. Marks, C.S. Day, S.H. Vollmer and V.W. Day, Organometallics, 1 (1982) 170; R.G. Finke, G. Gaughan and R. Voegeli, J. Organomet. Chem., 229 (1982) 179.
- 3 L. Arnaudet, P. Charpin, G. Folcher, M. Lance, M. Nierlich and J. Vigner, Organometallics, 5 (1986) 270.
- 4 Y. Mugnier, A. Dormond and E. Laviron, J. Chem. Soc. Chem. Comm., (1982) 257.
- 5 M. Cassir, R. Godard, M. Ephritikhine and D. Baudry, Proc. Meeting Euroanalysis VI. Paris, 1987; F. Ossola, P. Zanella, P. Ugo and R. Seeber, Inorg. Chim. Acta, 147 (1988) 123.
- 6 M.L. Anderson and L.R. Crister, J. Organomet. Chem., 17 (1969) 345.
- 7 P. Zanella, G. de Paoli, G. Bombieri, G. Zanotti and R. Rossi, J. Organomet. Chem., 142 (1977) C21.
- 8 D. Baudry, E. Bulot and M. Ephritikhine, J. Chem. Soc. Chem. Comm., in press.

^{*} Sodium amalgam reduction of Cp₃UR (R = Me, n-Bu) in the presence of the crown ether similarly gave the crystalline [Cp₃UR][Na(18-crown-6)] compounds, the ¹H NMR spectra of which agree with those previously reported [3].